miércoles, 24 de octubre de 2018

La inteligencia artificial para combatir el Fraude Interno


Albert Salvador


Hace años que se viene hablando sobre el uso de la inteligencia artificial para combatir el fraude, aplicando un aprendizaje supervisado (“machine learning”) para etiquetar cada nueva transacción y predecir si es irregular o no. Para ello es imprescindible registrar y almacenar datos relevantes históricos y el resultado de sus investigaciones.

En definitiva seria combinar big data y algoritmos de machine learning, para desarrollar un sistema que sea capaz de detectar y predecir el fraude. Todos estos sistemas están focalizados al fraude externo.

Pero, ¿cómo se combate el Fraude Interno usando la inteligencia artificial?  ¿Qué algoritmos usamos para su predicción?

A continuación, dejo unas “pistas” sobre cuáles podrían ser algunos de los indicadores claves a partir de los cuales poder construir los algoritmos de “machine learning” para la predicción del Fraude Interno:

Facturas y proveedores:
·         Facturas incompletas, indocumentadas….
·         Pago a proveedores inexistentes
·         Pago múltiples a proveedores
·         Pago duplicado de facturas
·         Vinculación entre empleados/proveedores

Retribuciones y Gastos a empleados:
·         Exceso de autorizaciones
·         Alteraciones presupuestarias
·         Incumplimiento de políticas de autorización

Otros indicadores sobre empleados
·         Indicadores vacacionales (presencia continuada/vacaciones no consumidas…)
·         Rotación en relación con el puesto de trabajo
·         Uso inadecuado de tarjetas de crédito
·         Uso inadecuado elementos institucionales (móviles, mail, tarjetas de crédito empresa, redes sociales). Definición de palabras clave, lista “negra” de mails, teléfonos, etc….

Control de acceso
·         Autentificaciones incorrectos al sistema
·         Uso del sistema/comunicaciones en vacaciones o en horario “no habitual”
·         Transacciones con mayor consuma de CPU
·         Acceso a ficheros con información confidencial

Contables
·         Apuntes con corrección tras el cierre de ciclo
·         Apuntes sin concepto informado
·         Operaciones manuales

Ambiente TI
·         Intentos de acceso no autorizados
·         Accesos en horarios atípicos
·         Acceso con usuario de baja, vacaciones, etc..

Quebrantos
·         Quebrantos de moneda
·         Sustracciones de activos físicos materiales

Manipulación de datos de clientes
·         Número de clientes cuyo nombres, asociado al documento de identidad, pudiera no coincidir tras cruzarlo con otras fuentes.
·         Número de documentos de identificación cuya numeración no sea válida o que no parezca lógica atendiendo a otros criterios (por ejemplo, la edad registrada).
·         Cruce de clientes con direcciones anómalas con otros datos de los clientes y sus productos.

La lista es mucho más extensa y con indicadores más detallados, pero para que realmente sea eficaz hay que adaptarlos a cada organización, y encontrar esos algoritmos realmente válidos y predictivos.

Este artículo fue publicado en su Blog Fraude Interno, el cual es un Blog creado con el objetivo de compartir conocimientos e inquietudes relacionados con el fraude interno, tanto con profesionales de la auditoria interna como con cualquier empresario o directivo que no disponga de un departamento de auditoria interna en su organización. Para mayor información debes visitar: https://fraudeinterno.wordpress.com/.

       ¿Te ha gustado la información? ¡Compártela con otro auditor interno!

No hay comentarios:

Publicar un comentario